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AN SUSHBNTAIff RB7IBV OF THE MATHIBÖ-HILL EQUATION OF BBAL VARIABLE 
BASED ON NDMBRICAL SOLDTIONS 

ABSTRACT 

A deecziptlon Is given of a large number of trajectories of Hathieu's 
equation made on the ENIAC in 191*8 and available at BRL.   A large ofaart 
deserlbinit the behaviour of the solutions is given.   The occasion is taken 
to rsviev the essentials of the Mathleu theory for the benefit of the 
ooeasional user-proceeding froa the point of view of an inspection of the 
nmerioal data. 
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IHTBODUCTION 

ID. a nraaber of pioblens of mathematics and engineering there arises 
the Mathieu equation 

dfy/d»   ♦ (a - 2q cos 2z}y - 0, (1) 

«hers a and q are constants and the factor of 2 under the cosine symbol 
is use? largely- for historical reasons. A number of alternative forms 
may convey the physical significance of a particular problem somenhat more 
clearly: e.g., the periodic coefficient may be written as n (1 ♦ k cos 2s), 
ir(l + k cos z)g  (1 + k cos Nz)fl etc. When generalized by substituting any 
periodic (usually even) function J(z) for the cosine, the equation is 
called Hill's equation. The subject may be the outset divided in two parts: 
s might be either real, or complex (e.g., if s is pure imaginary, this is 
equivalent to replacing cos by cosh), ife shall here consider only the 
former case; then the subject is a generalisation of simple harmonic motion 
and more particularly, of the theory of the vibrating string, though it 
differs from that simple theoiy considerably. Thus, in the theory of 
hamonio motion the only parameter (angular frequency for each mods) can 
be readily mads 1 tay suitable choice of the scale of z)  but when the 
"spring stiffness" term acquires the character of periodic oscillations, 
no fewer than two additional parameters must be considered (e.g., a and ^, 
the scale of s having been fixed azbltrarily). The solutions exhibit a 
considerable variety} depending upon the combination of a and q they may 
be stable, unstable or periodic; their description requires a description 
of the a-q plane, which may be divided into regions of stability and In- 
stability, (Cf. Fig. 2.). The Mathieu equation «as introduced (la 1868) 
in the study of the vibrations of a membrane; it is therefore natural that 
these equations possess an elgenvalus character. This character is exhibited 
by a definite periodicity of certain solutions belonging to the border-lines 
between the stable and «stable regions in the a-q plane. In a nwtoer of 
Problems, however, this eigenvalue character is not of the essence. The 
subject, therefore, may be further divided into two partst the boundaxy- 
valna problems (I.e., essentially the (^termination of those a and A which 
would yield solutions of specified periodicity) and "what may'be called 

initlal-valm» pzoblsM".* 

There exists an extensive litexature on these equations; and in- 
particular, a «ell-nlgh «xhaustivm compendium was given by HeLachlaa* 
la 19U7« Traditionally, the approach has been via the use of infinit« 
series; as a result, the thorough stuty of the subject encompasses much 
avdllaiy detail (such as recurrence relations, proofs and eosqparisons of 

0» the labor of which may easily distract and discourage a 

Bsference 1, page 9 
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■er« occasional user of Mathleu theory) while of ten "a formal solution .... 
Is mniij a stepping-stone to quantitative results"2. The modem growth 
of high-speed eooputlng machlrary (even thou^i it should not be confused 
with mathematics) cannot help but exert some influence on the approach to 
the problems of this sort} thus, it should certainly de-emphasise the use 
of infinite series as a mare means to obtaining a solution of a differential 
equation. Thus, in 19U8 Brillouln^ emphasised that the mnerLcal approach 
is particularly fruitful in dealing with Hill's equation. In fact, one of 
the earliest uses of KNIAC at the Ohiversity of Bsnnsylvania was a systematized 
compilation of some 200 trajectories of the Mathieu equation by Brainerd ft al**. 

The Ballistic Bosearoh laboratories had computed on the EHIAG at the Aberdeen 
Proving (hound some 1300 additional trajectories. These results contain a 
wealth of infozmation; and it is the object of this report to present at least 
a small fraction of this information. 

In introducing these numerical results it appears that the necessary 
explanations can be easily extended to constitute, to an occasional user of 
Mathleu theory, a rather self-sufficient oxpositlon of the essentials of this 
theory) i.e., it can contain the principal proofs as well aS an "empirical" 
description of the behaviour of the solutions, as fixed by the parameters 
a and e^ and the initial conditions. Since the method of solving a 
differential equation nimwrlcally, by its nature, represents the initial- 
value approach, the eigenvalne character of the equation need not be 
prasmed a priori, but arises naturally. 

RBUMIirASIBS 

The solutions of (1) possess two useful fundamental properties t 
they can be "translated" and "reflected". 

Because of the periodicity of the coefficient in (1), if y(s) is 
a solution, its translation by a, i.e., y(s ♦ u), is also a solutlont 
for this represents merely a shift of ths origin of s by it, which leaves 
(1) ueehanged. let* that a translation by */** or a shift of the origin 
by */2t  represents a change from -tq to -q, i.e., changes (1)) and therefore 

»t be allowed if a solution of (1) is sought. 

The second properly is brought out particularly clearly by the even 
form of the coefficient of y in (l)j ef yCl) is a solution, its reflection 
about the y-axls, i.e.. y(-s), is also a solution. la particular, if 
y'«)) • 0, y(-«) - y(«J, and if y(0) - 0, y(-») - -y(a)) I.e., tters exist 
sciaticas even and odd about s - 0. Mote thai the possible use of sine 
for eoelne in (1), i.e., a shift of the origin by n/k, would have obscured 
this property« ths reflection would still be possible, but about «A 
rather than 0, i.e., we would in effect have reverted to (1). lote also 
that this pgeperly must be dropped if J(s) in the Rill's equation is not 
even about any •. 



Just as translations by a can be extended to 2n, 3a« etc., the 
rsflsctiona may be mads about any z about which the coefficient of (1) 
is evenj i.e«, about » - 0, n/2, n~ 3fi/2f  etc. Similarly, there exist 
solutions even and odd about these values of s. A reflection about n/2 
is equivalent to combining a translation by «"with a reflection} i.e., 
ygC« -n/2) - yj (a/2 - s) is equivalent to ygC») - y1 (n - «). Of 

course, a solution even about » - 0 might be odd about % - n/2, and 
vice versa. 

A combination of y(») with its reflection and/or translation might 
constitute a complete solution* However, more powerful properties are 
needed if, given a numerical solution in a finite interval, we are to 
extend it indefinitely» Thus, yCs) and y(s ♦ n) are not linearly 
independent if y(s) has a period of nj y(s) and y(-s) are not linearly 
independent if y(s) is either even or odd; the solution might be non- 
periodic} or it might have an uncomfortably long period. 

i* 

MOBIAL (FLOQDBI) MODES 

It «as long perceived hy täte artronomers, and it was confimed 
In 1883 by Floquet, that there  Jdst« a solution of the form 

y(8) - a^«). (2) 

«here |i is constant and 0(a) is periodic, with the same period (n) 
a« that of the coefficient in (1). Such a solution can be readily 
extended indefinitely; and its reflection usually completes the 
solution. 

A proof of this important relation wuld be desired even hy the 
occasional student of Mathien theory. However, it would avail him 
little to verify (2) by suhetituting it in (l)t this mould only lead 
a differential equation la 0, «hioh is burdened by the presence of the 
wMmm (ft - and is, la fact, the eigenvalue aquation for p Cor for a); 
the periodicity of 0 would still be far from obvious. The fact is - 
la spite of the elegance of (2), - that p and 0 are not as basic 
ooneepts as the atpiber ei*** The proof proeeede as follows« 

Consider aay tarn Independent solutions, say g(s) and h(a), and 
let us toy to constreet a normal mode out of these two; i.e., let it be 

(3) y(a) - Aff(i) ♦ Bh(a), 

>, nomalisatioo aside, only the ratio of the constants, A/B, is 
of interest. Iwalüate (3) at t ♦ a. Observe that by the first 
fundamental profwrty of solutions y(a ♦ a), g(s ♦ a) and h(a ♦ a) 
all aim solutioos, and hence can be deoomposed in terns of g(s) and 
h(a). Si particular, put 

f(« ♦ «) - g^fCt) ♦ gpi*)l h(« ♦ a) - *>£{%)* h^d), (1») 



vfaars the coefficients g.9 gg, h. and h- «7 be readily detei«lnedf by 
diffemtlating (U) and putting a - 0.   Then 

y(« ♦ «) - (Agj^ ♦ Bhi)g(a) ♦ (Ag2 ♦ BhjW«). ($) 

On the other hand, if y(a) is of the fom (2), «e «mat have 

y(i ♦ it) - Sy(») 

where S - e1*". How, (5) and (3) anovnt to (6) only if 

ig1 ♦ Bhj - AS 

Ag2 ♦ Bhg - BS, 

«hlch, however, can be solved for the ratio 

(6) 

k/B - hjAS - gj - (S - hgVgj 

(7) 

(8) 

only if 

g, -S 

hj, - 8 S - iti*^* («x1^ " iZ*!) ' 0'    (9) 

It renains only to solve (9), to define |i as (lnS)/n, to introduce 

0(a) as e~,*,VC«) -where, of course, y(s) is given hT (3) and (8) - and 
to pexfoni the easy denonstration that 0(« ♦ a) * 0(a). The atataaent 
then 1st given any g(s) and h(a), it is alaays posaihle to detendne 
It and 0(s) so that (2)wlIllMMit solution. The invaziance of |i and 0(a) 
with respect to the choice of g(a) and h(a) nay, for our present puzposes, 
be accepted as obvious* 

The reader «ill note that the Floquet theoxy la a generalisation of 
the tzenslatabili^r of solutions, and that (6) is a siapLer statenent of 
this theoxy than (2), The atataaent any very well bet given any g(s) 
and h(a), it Is alaeya possible to datemiae S and the ratio k/B, and to 
construct y(a) auch that (6) uLU held. Vote that the reflectability of 
the solutions has not been used* 



FORMATION OF THE SECOND SOLUTION 

Obviously, if the two valuss of S from (9) are distinct, they 
deteznine the two normal modes, say, 

yjU) - e x ^(x)  and y2(») - e  ty*)» 

the stqperposition of which completes the solution. This would also 
complete the theory in the very general case of a Hill's equation with 
a non-even J(z). Note that, since the trans la tabillty of the solutions 
has been used up, y^U) cannot be got by a translation of y,(a). 

Consideiable simplification is now afforded by the evenness of the 
coefficient of (l)s viz», a second solution can be also obtained as a 
reflection of the first. In that case (^ * "V^t and fy^ " ^~z^* 
The first condition means that the two values of S are reciprocal, or 
that the last tern in (9) must be It this indeed can be shown to be the 
case for any choice of g(s) and h(z), but in practice this ensues even 
mors naturally - viz., it becomes apparent as soon as a practicable choice 
of g(z) and h(z) is made. The second condition, again, can be proved} but 
in practice it follow naturally when the second solution is taken to be 
a reflection of the first - which assumption, indeed, is in agreement with 
the first condition. 

A case in which the reflection of a normal mode fails to furnish 
a linearly independent solution is a peculiar orphan of the boundazy - 
mine part of the Mathieu theory, and will be discussed separately. 

FRACTIGAL CCMPDTATIONS 

Wbittaker and Hhtson , whose proof of the Floquet theory is para- 
jdumsed above, make no -commitment about the choice of the auxiliary 
functions g(z) and h(z). HeLaehlan pointed out the convenience of 
the even and odd functions, say u and v, 
oonditlona: u - 1. u» - 0; v - 07 V - Tj 
same as fa^ a ▼*(")» and (9) becomes 

nslnff 
with «hat may be called unitary 
in which case g, - u(n) is the 

.8- ♦ 1-0.  S - I tl/PT (10) 

«hexe X • u(n) • v8(«)j bat he discussed the theoretical oaleolatlona of 
S much as though the mswrlcal computation of both n and v had indeed to 
be carried over the interval Ocs^.«»    In conpxtinglpractlce, of course, 
such work can be halved in a niatoer of weys.   Thus, in the available 

.3.U.5 calculations' the «ynetxy of u and v is utilised to limit the 

Reference 1, pp. 2> - 2ti. 



calculations to the interval O^s^n/Z, the remainder being furnished 
by the reflections about s - 0; the Interval then is ~n/2i,z£.-n/2t and 
the unitary initial conditions occur in the middle> zather than at the 
beginning of the Interval.   Then (9) assumes the form 

S2 - 2(2A -l)S + l-0,    S-2A-1* 2l4(A - 1), (11) 

where A - uCn/Z^' (n/2). Incidentally, a running check may then be kept: 
that the Wronsklan, uv' - u'v, remains Ij this concerns the very important 
(but now. It 1 s hoped, largely historical) question of the reliability of 
the high-speed computing machines. Note that the two values of S are always 
reciprocal. 

In retrospect It appears that if and when additional computations 
are to be made» at least three alternative procedures ought to be considered. 
Two of these, much allUe, are obvious t ue may utilise, instead of the 
synnetzy, the fact that u(n) - v'Cn), i.e., compute either only u(a) or only 
vCs), but for the full period Oz.z^n. This will forego the checV on the 
Uronskiam, but might save time in the subsequent handling of the machine 
data and in re-setting the machine for the second set of initial conditions, 
or some capacity of the machine. The second auzllianr function, when needed, 
can be gotten by the reflection of the first about n/2i  e.g., as U(s - n/2) - 
u(ii/2 -a), which Is the same as reflection about s ■ 0 and translation. 

The third possible procedure is mentioned, as a matter of curiosity, 
for the reason that its details have somewhat better physical significance 
in relation to certain other problems covered by the Mathleu theoryt if 

u ♦ iv » re . only r(s) need be compubed by Integrating a differential 
equation, 0(a) being easy to compute by quadrature. 

Available computations are limited to the equations (1), but the 

methods discussed , of course» are applicable to any SHI'a equation, as 
well. It is hoped that thsy will also prove useful in eztendUg the 
nunerical work to the other Mathleu equation (with cosh instead of cos), 
which belongs to the theory of functioms of complex variable. 

CEI5SIFICATI0N OP SOLOTIOHS 

9 
Three principal oases should be distinguished accordingly as E   is 

greater than, equal to, or less than 1. 

(a)   Otatable* Solutions.   12> 1. 

This should be subdivided into 

(1)   the siapler case, B71» both S70.   The physical 
significance is that u (or v) either grows more or less 

moDBfenioally, or, if oscillatory, has completed (or is 

The instability "in the large? i.e., the fact that amplitude of y is 
unbounded, should not be confused with what nay be called "local in- 
stability4', which will be discussed presently. 

10 



about to complete) at least one (or 2, 3, etc.) period} 
and that it is oscillating further than at the start. 
In facty    the essence of the phenomenon Is resonance.    \i. 
Is real (and Is always reckoned as positive» I.e., Is taken 
for the growing mode).    One noitnal mode grows$ and the 
other shrinks; exponentially.   It can be eetabllshsd empirically 
(and oonflnaed theoretically., with some effort) that the 
combinations of the parameters a and £ at which this situation 
occurs constitute a region« on the a-q chart, which converges 
(for q-»0) to the point a • nZs n even integer.   These may he 
called "even-order regions of InstabHity*1.   A special such 
region is the zero-order region, or the region of "static" 
instability, characterised principally by a negative coefficient 
aj incidentally, a^.0 does not assure "static" instability» 
with certain values of £ oscillations may be stable even with 
negative a (cf. Fig. 2). 

(2)   The case of B^--l is not much more complicated.   The physical 
significance is that u has completed approximately a half- 
integral nuaber of periods, and the oscillations are growing} 
after the next interval n of s , the resonance will be 
conspicuous again.    Both values of S are negative} but now, 
in order to account for a negative S ■ e   , ji must have an 
imaginary part of 1 (or generally, an' odd integer).   The 
factor e*^ is therefore complex} and since u and y - in 
these computations, at least - are real, the function 0(s) 
must be complex.    It is conventional in this case to 
consider only the real part of (i, and to combine the factor 
el( lijs ivi)0xn lvk ig the inaginary part of p) - «bich factor 
has a period of 2n - with, the complex 0 of period n into a 
real function 0(s) of period 2«.   The regions in which this 

2 
occurs converge to a • n » n an odd integer, and nay be 
called "odd-order regions o7 Instability".   The most important 
region of Mathleu-type instability (the first-order one) 
belongs to this class. 

An inspection of the mechanism of the growth or shrinkage 
of the oscillatians, as well as of the phase-relations involved, 
yields a consideiable insight into the physical significance 
of Nathleu theory.   Thin will be attempted presently.   The 
essence of the phenomenon is the tendency to lock into a 
resonance at an angular frequency 1, 2, 3, (i.e., a 
■oltiple of one half of the frequency of cos 2i), rather than 
at what nay be called "expected natural" angular frequency iV2#. 

If the factor of 2 under the cosine symbol in (1) is 
cBÜLttedTf the numbers associated with the instability regions 
(i.e., their angular frequencies) become 0, 1/2, 1, 3/2......| 
i.e., one might them speak,» rather, of "half-integral" and 
•integml" orders of Instability. 

11 



Both cases can be merged If Floquet theoiy is applied 
to the interval 2n (rather than n) of sj althoqgh that 
procedure fails to bring out the periodicity of 0(z) in full. 

(b)   Stable Solutions.   B2<1.' While the magnitude of u(n), or of 
▼'(n), is less than at the start, the physical signifioance of that is not 
a danqping of the oscillations, but rather a change of phasej in fact, the 
essence of the pheaonenon is the absence of the resonance.   Mathanatieally, 
the solutions are "bounded"} although in certain regions of s the beats can 
produce an impression of "local" instability, and might lead to wiy large 
(viz., perhaps unexpected) values of u or v.    I.e., while the boundadness 
assures that a regime of local, or apparent, instability «ill always be 
followed by a regime of local damping, the practical significance 
(prestnably, especially in a close proximity to the instability regions) 
might be akin to instability. 

The two values of S are complex eonjugatesj but thsy are 
still reciprocal, and hence the magnitude of S is 1; i.e., the real park 
of u is 0.    It is conventional to designate such an imagiaaxy i* by ip, 
ß real.   The meaning of S ■ a*"*1 is a rotation in the complex plane through 
angle pa.   The factor •*?> la complexj and even if the noxaal modes were real 
(which, it will be presently show, cannot be the case), 0(.%) most be 
complex;*.   The'vain» of p as detendned fron S, of course, nay eontaim 
an aztdtrazy even integers and since there are two opposite values of p, 
P is naturally confined to the range 0^ p £-1.   St fact, a value of p - 1 
means simply a reversal of phase of y(n) as compared with yCO)} this 
means a change in the nwber of periods of yC«) per period of a by a 
half-integer, or a change of the angular frequency of It   whicE is 
precisely what happens if we move across the stability region on the 
a-q plane from one instability region to the adjoining one. 

If P is a rational fraction p/s in its lowest terns, after- 
and only after - the increment 2»% of t the vector e1?* will return, to 
its starting position; i.e., y(i) is tStoretieaUy pexiodie, bat its 
period may be extremely large.   If p is irrational, y(s) is, strictly, 
mm periodic.   However, it would seen that if a very long (oomplex) 
helix of y(a) were available, one could detect in it a noftwr of 
approxtaate periodicities, as an irrational p may be approximated by 
a sequence of rational nnabere. 

(e)   Characterietlc Conditions.   I2 - 1.   This important border» 
UM ease is a rather exolnsivn domain of the bouadary-value part of 
Mathieu theory.   Hevertheless, two classes of solutions must be 
diatingulshBd. 

*  SriMtitution In (1) shown ^«50 if 0 is wal, which is inpossible. 
■ 
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(1)   Chftrftoterlstlo Solvbioas    (the Fkiihieu fmctions), idxlch 
*» periodic^   It is these solutioas «ddoh have bee« the 
■ore .«dcfceasiieely etudLed; in fact, the whole botadary- 
YKlue»pirolxLeii8 part of Hathlfiu t:iac zy anotmts to a search 
for solutloas of this specifi&d (psriodlö) character» 

The phsrBioal sigalflcanee of such solutions suggests 
itself, readilyt   if. u(n) or v«(n) is ♦ 1> the initial 
conditions for the interval n<.z<^n might be practically 
identical vith the conditions at » • Oj in fact> the second 
necessary condition« that u«(n) or v(n) Is 0, is either 
siqpplied hgr the machine autwnatlcally (in which case the 
fonetion ednqtuted is the characteristic solution) or 
foHöWB fromuCn) * ▼,(n) and uy« - u'v» 1 (1» which case 
the Chajracterlstic solution could be made out of the 
conpvted f tnction and its ref lection^ U or T).   In 
particttlKTy in (11), S ■ ♦ 1 implies either A » 1 or A > 0; 
and eoasidezing the VroasBaa, there are four - and only 
fbur WwyB in which this nay occurs   at s » n/2, either 
one of n, tt»» r or ▼' must be 0.   To establish the periodicity 
of the function in question it then remains only to reflect 
it (evenly or oddly, as the ease nay be) about n/2.   Thus 

its period   its aagular   and it is 
frequency is   denoted by 

If at 
« - n/2 S -. 

; the characteristic 
function in 

its pei 
is 

u*0 •0. u 2n 

u« - 0 1 *     . n 

T- 0 1 ▼ n 

T« - 0 *a ▼ 2% 

1 

2 

2 

1 

I2M.1 («,q) 

this« are the Mathieu functions of integral order*   The 
notation Mf a« is read "elliptic oosineN and "elliptic sine". 
The subsoript, or the prdsr of the function. Is the order of 
the instability region bordered by the efaaraeteristie 
condition In question.   While these, functions have n or 2n 
as their «net period, much »ore prominent (and from the ▼lew- 
point «f pkoraleal tdgiiiflcance, more important) is the oscillation 
of tt» fxequsnof nj tis*, of the order of the instability region. 
Thus in oeQ^jq) a coospicuous feature (in addition to an 
oaciUation of period n) in the constant tern; and cell(z,q) 
rather resembles ces(ns) in its appearance, while se (s,q) 
resembles sln(ni)«   The fundanantal frequency la manifested 
only as tMta» wldch - lito the constant tern of oe^, m / 0 - 
are ctflen'barely discernible*   At q • 0, ee^ and se, indeed 
degegezate (noraalisatiön aside) to cosfn») and sinfns)» 
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With the trigonometric and the lyperbolle functions 
of similar names, ce and se share only the basic properties 
of evenness and oddness, and of a mutual orthogonality. 
They do not have the convenient properties of sin, cos, 
sinh and cosh as far as their derivatives, or the relations 
between their souares, are concerned. 

It is important to note that ce and se are not the 

solutions of identically the sane equation. Bach instability 
region of order n, n / 0, is bounded - for the same a. - by 
two characteristic conditions, with different values of a 
of (1); and each characteristic function belongs to one ör 
other of these two conditions. Specifically, if £ is reckoned" 
as positive (as is conventional), ce belongs to the "far" 

n 
side of the instability region (the greater value of a), and 
se belongs to the "near1* side (the lower a). The situation 

would be reversed If q were reckoned as negative, vis., if1* 
(1) were written ao y* ♦ (a ♦ 2q cos 2s)y » 0} but the shapes 
of the two curves would then be exchanged? vis«, se, would then 

look like the ce, solution of (1), and vice versa, except for 

the change of phase; i.e., the change would amount to shifting 
the origin of s by n/2. 

In fact, it is much easier to consider the physical 
significance of these two solutions. Thus, the odd se is 
the more economical of the "static" stability, as represented 
by at when the spring stif Aasss is a mluimum se^ passes ' 

through zero, i.e., is in a phase when the spring stiffness 
does not matter anywayj and se, utilises the maximum of the 

spring stiffness in full, i.e., the maximum of se, occurs ' 

sben the spring stiffness is a nuudmm. In contrast, the 
even ce, is the more wasteful of the static stability, or 

is the more sluggish function; to wit, it fails to utilise 
the greater value of a to increase its frequsnoyt it passes 
through sero uhen the~spring stiffness is a maximum, and 
therefore dwslls longer (or - more exactly - dwslls Just as 
long, in spite of the greater value of a) at each swing ffcom 
sero. Thus, as we proceed across an instability region in 
the direction of increasing a, there is no change in 
frequency, but there is a change in phase, as the excess 
of static stability is being used less effectively. 

This explanation can be extended to higher orders of the 
instability regions; bat there the split in the static 
stability values matter« progressively less and less. 
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Th« aero-order region is rather an exception«   It is 
bounded only on the "far" side, and has only the even 
solution oe   of period n (i.e., of twice the frequency of 
oe. L)j there is no 8e0(s9q). A change of ♦q to -q merely 
shifts the origin of £ from the mlnimtm to the maximum of 
cs0(»»q). 

The characteristic solutions bqing ecLther even or odd, 
their reflections fail to furnish linearly independent 
solutions. This is not lin any contradiction to the Floquet 
theory, since the existence of both auxiliary functions g 
and h are by no means essential to that theory. Thus, if 
(2) Is to be applied to g(s).only, and S is to be 1, there 
merely follows that B • 0* 

The characteristic solutions definitely belong to (and 
in a sense, afre ancestors of) the stability regions. 
Specifically, if we restrict the period to n (S - 1), there 
arise only th» border lines of the even regions of instability; 
if we relax this to allow 2n (S «-1), there arise the border 
lines of odd regions of instabilityt if to U* (S -i), the 
lines of p - l/Sf if to 3n (S - e12xA>), the lines of ß - 2/3, 
etc., until all stability regions are densely shaded. The 
even and odd stable solutions are, in fact, called Mathieu 
functions of fractional order n»ß. The discontinuity of this 
shading doe to the possibility of an irrational ß would 
appear, to a "technologist"*, a rather technical matter. 

With the unstable solutions the characteristic solutions 
share, of course, their predominant frequency; but they are 
distinguished ty their very definite phase relations, vis., 
their evenness or oddnees. 3h fact, the even and odd un- 
stable solutions (our u and v) are denoted by oeu and sou 
(u for "unstable"), with mn"index n ♦ m where the two 
conditions (two values of a for the same u and q) can be 

•e       "*   • 
distinguished by writing £ or p» 

Curiously, the uniqueness of the ohaiaoterlstie solutions 
(vis*, the absence, for a given a and q, of a second periodic 
solution of the same frequency) seems*"^ to have been proven, 
by Ince, only as late as 1922. 

Befeztnoe 1, page T«. 

Beferenoe 1, page 88» 

Bsferenoe 1, page Uil* 



(2) Secular Solutions, MLth characteristic conditions« as ve 
have seen, the characteristic solutions require particular 
(either even or odd) Initial conditions. But from the 
initialovalue point of view the non-characteristic initial 
conditions are just as legitimate; in fact, these "second 
non-periodic" solutions, to which such conditions give 
rise, have been given a standard notations when u is 
een(z,q), the odd solution v is denoted hy fen(s,q), and 

when v ■ se (8,q), the even u is denoted by gen(z,q)j the 

English names are apparently lacking* These solutions 
are orphans in the sense that they arise only at the 
characteristic conditions, yet fail to satisfy the basic 
requirement of the boundary^ralue theoiy, «bleh is the 
reason for these conditions» they are neither periodio, 
nor stable, nor do they obey the Floquet relation (2). 
On the other hand, they do obey an analogous relation, which 

apparently should be called the Ince relations 

fen(»,q) • Cn(q) s cen(»,q) ♦ fnC«,q) 

gen(»»<j) - Sn(q) s sen(»,q) ♦ g^a.q) 

«here C and 8Q are, for a given £, constant coefficients, 

and the functions f and §r ere periodio, of the same period 

as the corresponding characteristic functions, and are, 
respectively, odd and even. Just as (2) has the more basic 
form (6), the more basic form of (12) states that the 
Increment of fe (B,q) or gen(s,q) over any period n (or 2«) 

is a constant, i«e», the increment is a periodic function 
of t. This relation being of a lesser generality than the 
Floquet's one, its proof is hers omitted; It may only be 
remarked that the proof utilises ref leetability as well as 
the translatabillty (since the ref lectability is already 
Inherent in the fact that cen and sen are synnetrlc). These 

solutions are obviously analogous to the secular solutions 

(such as xex) of linear differential equations with constant 
ooeffielente» 

The leek of periodicity of fen and gen is apparentt for 

small a they have the pbase of tn end j^, i.e., are "at 90°" 

to cen or een, ae the case may be} while for large % they 

approach the phase of oe or sen asjnqpltotieally. The lack 

of stability, as t approaches «QQ , is made obvious by the 

Ibferanoa 1, pp U and UiU. 
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presemoe of the factor 8. Since the ratio of any two 
succeeeiTB mazina of fe~ and gen approaches 1, for all 

practical purposes, these solutions tend to ee. and se 

of sons large aaplitude. 

The secular solutions seem to constitute the border 
line between the slightly unstable solutions and those 
"stable" solutions which lead to large amplitude of j(z) for 
large «• So to say, as we pass across a characteristic 
condition from the stable region into the unstable one, 
the beats nay generally grow in magnitude indefinitely, 
and at the sue time recede indefinitely} within a large 
finite interval of s the solution nay finally becons in- 
distlnguishabls from a secular onej thereafter it will 
pass into an exponentially unstable solution. If, how- 
ever, the phase of the initial conditions is exactly 
right, the beats may be moderate in magnitude, will pass 
through the characteristic solution, and then shrink 
exponentially« 

Obviously, fen and gen can be extended indefinitely 

if the coefficients C„ and S. and the functions f. and g n    n n   "n 
are determined in a finite interval« specifically, if the 
calculations are extended to a point at which either one 
of f, f*, g or g1 is sero. 

Of course, the occurrence of the characteristic 
conditions in the numerical calculations is either in 
the nature of an accident, or must be imposed specifically. 
Vfaile some of the available calculations pass quite dose 
to a characteristic condition, none of them do so exactlyi 
for such an ab ovo derivation, check and inspection of the 
characteristic conditions las not been the purpose*. It is 
nevertheless conoelvable that extensive data on een, se., n'  n' 
tn, g^, Cn and 8n can be procured. Incidentally, the 

functions in question seem to be tailor-made for an 
,lempirioalN analysis in Fourier series, so that each one 
of these functions of t may be given in a compact colwn 
of Fourier coefficients. The method will be free from the 
difficulties of convergence with large values of £. 

It is interesting to note an empirical observation 
made in the construction of the contour plots of S in the 
instability regions s in vicinity of the characteristic 
conditions aS/aa and as/bq appear to be infinite. If 
proved, this will mean that an accurate detendnation of 
the etaazmoteristie conditions might be aided by the sensitivity 
of 8 to the choice of a and 1» 
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SlnHarly, no information is now available on the 
curious question, whether there exist some convenient 
relations between the periodic functions ce , senS fn> g: 

and their derivatives.   The Interpretation of the solutions 
in terms of infinite series is extremely laborious, and 
the empirical numerical approach might be of a considerable 
veins« 

FBHEODIC KERNELS 

The outlined and the available machine computations have been concerned 
mainly with the determination of the Floquet ooefficienV^of (2), or5 of 
the "amplification factor1* S of (6).   The solutions which can be extended 
indefinitely in this manner, of course, are only the normal (Floquet) 

modes ; but the readily obtainable auxiliary functions, vis., the even 
u and the odd v, generally are not the normal modes (in spite of having 
Hie standard notation Oö^QJ ^^II* e*c» )•    Haturelly, a method of 
extending the solutions, to be complete, should include a specification 
of either a noraal mode, or - preferably - of the function 0(s) of (2). 

To specify a nonoal mode, it remains merely to carry out the operations 
(8) and (3). If one noimal mode is Au ♦ Bv, the other one ie Au - Bv, both 
with a possible arbitrary (oooplex) factor« 

In particular, with the unitary conditions on one end of the n - 
Interval, (8) becomes 

A/Ö-T(«)/(S-U(II)) (13) 

which may be transformed, with the aid of (10) and the Wronsklan, Into 
forms InvolTing either only u or only TS 

A/b-lVu'C«)]/»^! - ^«VI/E^T-!   (Hi) 

VLth the Unitary conditions in the middle of interval, as In (11), 
(8) beoomss 

A/b - T(II/2)(S ♦ l)/u(«A)(S - I)        (15) 

At a characterletle condition a normal mods is either Au or Bvj 
in fact, that k/B Is infinite when u la ee^ is obvious from (lli)j that 

A/B is sno «hen ▼ is se can be seen from (13), for then n(s) Is gen(s) 

and Is not perlodie, and thsrefore «(a) / 1* 

' 

lot to mention the secular (lace) modes« 
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Tha auziliaiy functions u and ▼ being real, in the unstablt regions 
A/B and the nornal nodes aro~r8al|'it does not particularly help natters 
to introduce the camplBx spirals u ♦ iv or y^ ♦ ly2.    It nay be renaiiced 
that the nozml nodes, as well as 0(z)t are then neither even nor odd - 
clanging as they do across the unstable region fron an odd se   to an e-ven 
^n* 

In the stable regions a convenient visualisation is possible. Since 
the vector S has a nagnitude of, 1, the vectors S ♦ 1 and S - 1 in (15) 
aremtually perpendicular in the complex plane, and therefore the ratio 
A/B is a pure inaginary; thus the normal modes cannot be real. The 
convenient feature is that the complex helices representing these normal 
nodes have u and v as their rectangular components » except that one 
of these coordinates must be stretched in particular ratio (the nagnitude 
of A/B), and that the ifcols helix nay have an arbitrary scale and phase 
(that of either A or B). In other wards, if we put A ■ 1, u can be 
considsred as sinply the real component of either one of the complex 
conjugate nonal nodes; or, if we put B - i, v can be considered as 
simply the imaginary component of one of these nodes (the other helix 
being a nizror image of the first). The points on the helix of a i 
nornal node corresponding to a, « ♦ n, z * 2nt etc., indeed lie on > 
unifozn helices; but the whole helix, nevertheless, is not a unifona 
one - because of the oscillations of the nagnitude,- and the non-uniform I 
rotation, of the vector (fOO. 

The specification of 0(s) is preferable to a specification of a 
normal node over a complete period, for two reasons. In the unstable 
regions y(n) / ♦ y(0), nof is ?*{*) the sane as ♦ y»(P), eo that if 
y(s) were to beTespanded in Fourier series*, it lust be reckoned as 
discontinuous. In ths unstable regions it is entirely inpractical to 
tabulate y(s) over the oonplete period (2sn), uhile a reconstruction 
of y(«) fron the data in the interval of length a anounts to the use 
of the function (/(•)• 

There exist a nuaber of Ingenious nethods of determining 0(a)« 
MM, 

Thus, apparently    in l^Ui Whittaker developed a Fourier series In 
terns of a new parameter a, whose physical significance is in the 
nature of a shift in phase; in terns of o and q, by the Me of a 

i 

The function 0(s), obviously, is particularly suited for a Fourier 
series representation, «bile the purpose of this report has been 
to avoid the infinite series, the Fourier series, of course, hold 
an exceptional place anong such - because of the strong physical 
significance of their coefficients. 

Beferenee 1, p. 70. 
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number of aorlllaxy aeriea. It is possible to compute the coefficients 
a and p, as well as the Fourier coefficients of (?(«). Melaohlan gives 
«hat mj be called Fouriex»4Iathieu series« In terns of ee_9 «en. 

larbioularly useful^ perhaps, ar* the recursion f^nxüas for the Fourier 
eoeffleienta of &{%)$ 4xioh leave an a priori coaputation of only four 
scalar Fourier coefficients neeessaxy« the remainder being easily 
generated by the recursion» 

Nevertheless it appears that for praet&oel purposes there remains 
room for the less imaginative (though heretofore more laborious) 
*eapirioal" approach! vis.» for a tabulation of numerical data, through 
conputing 0 as (Au ♦ Bv^"*"? and, if desired, decomposing this function 
in the Fourier series numexically. Such an undertaking (first outlined, 
apparently, by Brainerd) is outside the scope of this report; but the 

1500 SHIAC tiejeotorlee ' are available to those «ho would embark upon 
it* In such an undertaking, the scalar compononts of the oscillatozy 
Fourier integrand ^(»)elp*» p - 1 and 2, can be readily got from the 
«vailBble data at 31 points in the interval n/Z  of %$  the higher-order 
coefficients (p - 3, U...) can he got by recursion. Incidentally, 
the interpolation (if desired) might be facilitated by reverting 

to polar coordinates! if 0 - re . both the radial and the enguTar 
coordinates of the Integrand, r(s; and d(s) ♦ ps, are smoother 
functions of s than its rectangular coordinates are. 

A similar empirical approach can be readily worked out for the 
Inoe fxnctions fn and gn» However, since no available solutions occur 

exactly at the characteristic conditions, some interpolation across 
these conditions might be neoessazy; and in view of apparently peculiar 
behaviour of the solutions in this vicinity, the subject appears to 
deserve a separate study, as well as some additional mneiical data* 

As was mentioned before, the predominant frequency of 0(s) in the 
unstable regions (including the cbaraeterietis conditions) is that of 
the order of the region. It is natuxel to expect that in the stable 
regions the predominant frequency of 0(«) is that of the adjoining 

lover-order unstable region, the factor e^* making vp the differ- 
ence between that frequency and the pzedemdnant (intermediate) frequency 
of the nornal 

An interesting question is whether at some conditions the variation 
of 0' may not amount to the change of phase onlyj off-hand, this does not 
appear possible, since the shape of fi must also change from the economical 
(leptokurtie) se_ to wasteful (platyknrtio) ce . 

Beferenoe 1-, v ^5 
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REMARKS 

The Mathleu equation (or the Hill's equation with an even J) is 
particularly interesting because it constitutes a border-line between 
the linear and the non-linear differential equations. Specifically, 
at the characteristic conditions of the first-order instability region 
(and with a further stipulation that 2q<.a) the "spring stiffness" 
coefficient of (l) is uniquely related to the magnitude of the 
characteristic function. The mechanism of the oscillation then is 
precisely the same as if this coefficient were a function of se, or 

CSTJ i.e., as though the equation ware non-linear, y" ♦ yF(y) - 0, 
In particular, on the "noar" side of the instability region, which 
gives rise to se-,, the stiffness increases with the deflection (as 

in a tension spring), i.e., the curve of yF(y) is convex toward the 
axis of yj while ce,, being loss economical of the static stability, 
represents an oscillation such as might be caused by a compression 

# 
spring • The periodicity of ce1 and se^ is in agreement with the 

feeling that a system described by such a non-linear equation (F positive) 
is conservative and has no damping. The existence of two values of the 
static stability a for the same frequency confims the feeling that the 
average value of F(y) is not a good one for the estimate of frequency» 
or that the shape of F(y) can affect the frequency. The usefulness of 
such an analogy, of course, is limited* 

Particularly Interesting is the mechanism of the shrinkage and 
?rowth of oscillations in this first-order region near exact resonance 
a ■ 1). The shrinking node then is receding from the equillbriun «ben   , 
the spring is stiffer (nA^.«Z.2nA)» and is approaching the equillbrlua z<^r 
when the spring is weaker (-«A<»^*A)« The result is a damping of the 
oscillation, somewhat similar to that produced by a damping force 
proportional to the velocity y'(>) - with the important difference, 
that in the swing from one extremum to the next one, this effective 
dwping force is applied to the shrinking Mathleu mode, so to say, in 
two spurts instead of one: vis., at y(z) - 0 there is no force, while 
in the damped harmonic motion the damping force is maximum at that 
instant* The frequency of the oscillation then, generally, is not 
affected. The extremum occurs at a - 3«A» 

The situation is exactly reversed for the growing modes it recedes 
from equilibrium at the time «hen the spring Is the weakest, and returns 
wfasn the spring is the stiffest. The extrenmn occurs at s ■ «A» 

The analog implied here is a familiär onet a point mass slides on a 
table and Is connected by a spring passing through a hols in the table 
to a spring which is fixed on the other end. A familiar ballistic 
instance is the non-linearity of the righting torque on a fin-stabilized 
projectile. 

•..■■'■ 

■'■•■. 
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igaliif there is little net effect on the frequency« 
noraal nodoe are neither e-ven nor odd« 

Note that both 

Consider then the situation when the ertramun of the oscillation 
coincides with an extrenun of the spring stiffness, i.e.« occurs at 
B ■ 0 or n/Ö. Then there is no damping» we would say that both nozval 
■odes art present In equal proportions f and the shrinking of one is 
offsetting the gzvwth of the other. Howe-ver» the phase of the 
oscillation then is not stable> vis., this phase relation cannot be 
oalntained* In particular, let the extremm of the oscillation occur 
at the maximum of the spring stiffness (at x/2): the oscillation then 
is the more economical of the static stability a, which in this case 
is greater than that corresponding to se^; therefore the phase of the 

oscillation will get ahead of the phase of the spiing stiffness, or the 
extremm of y(z) will shift toward s ■ n^i. Now let the extrenun occur 
at the minimum of spring stiffness (at s ■ 0)i the oscillation then is 
analogous to cen but lacks the margin of the static stability associated 
with the wasteful ce,« The phase of the oscillation then will lag behind 

that of the spring stiffness, and the extremum of y(z} will shift toward 
i ■ «A again. This means that in both cases the growing mode will 
predominate. It can be said that the phase of the shrinking mode is in 
an unstable equillbritta, while the phase of the growing node is stable. 

Best, it is Interesting to Inspect the mechanism of locking into 
resonance. let us consider, for instance, the case of static stability 
a being less than 1, but Still greater than that which gives rise to se^ 
Tin the conventional notation, the case a^a £1). Let us inspect 

tlie four representative (but now no longer noxmal) nodes which have 
their extreme at s ■ o, «A, n/2, and 3*A (covering the period « of 
cos 2s). He may call these modes, respectively, Wasteful11-,, "Qrowtng", 
"Economicali', and "Shrinking". It Is natural to represent'these pha^e 
relations as points of the compass (using, perhaps, the tent "Nourishing" 
orescent" 9 etc« for "Orbwing" to eoaplete the mnemonic synnetry)» 
Obviously, the oscillation of the W mode will lag (vis., the vector 
representing its phase will move clockwise on the diagram)* On the 
other hand, the N-osoillatlon will advance (move couatereloekwise)« 
The S- and 0 (or N)-oeclllations will tend to have the "expected - 
natural" frequency • ' , and will therefore lag. Thus there will 
eventually ensue in the N-B quadrant a stable growing modef while 
In the S-E quadrant there may exist,with its phase in unstable 
equilibrium, a shrinking mode. For «-»«** both modes will tend to se,. 

Similarly, If a 71 but less than that which gives zise to ce, 

(denoted by ^)« the N- and S- modes will advance in phase, and the 

stable modes will exist in the N-¥ 'and S-¥ quadrants, tending to Vneode 
(ce^ for a->bj* Since the stable modes are off the N-S phase* tl^elr 

rates of growth and sbrlnkage (it) are naturally diminished^ 

22 
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It will be noted that these non-normal modes have a changing 
frequency} the beats between these frequencies nay produce other, 
"local*, frequencies.    In particular, it is natural to expect that 
in a finite interval/jf z the apparent "local" frequency might be 
closer to that of IT*  » rather than to the resonant frequency, 1; 
this would be explained by the shift of phase resulting from the 
exchange of the magnitudes of the normal modes.    The resonant 
frequency of 1, which characterizes the whole region of instability, 
is manifested only as the frequency of the surviving mode. 

DESCRIFTIOM CF AVAILABLE TRAJECTORIES 

Wiile a generous amount of computation examples, tables, graphs 
and charts is given in Hclachlan's book (including, particularly. 
Dr. J. Comrie's lso<-ß-|xchart, or the contour plot of iso-ß and Iso-M- 
lines on the Ihce's a-q chart), it is here desired to describe, in 
particular, two sets of ENIAC datat 

(1) Breinerd's data •   The equation (l) is written in the fora 

d^/dt2 ♦   e(l ♦ k cos t)y » 0 

so that t - 2s, k - «2q/a (origin of z shifted by n/2),  €■ aA>   The 
auxiliary functions £ and h (our u an3 y) were computed at intervals 
•000U of t, to 10 places (are recorded and are apparently available, 
together with values of g* and h*, at intervals of .1 of t, probably 
to 7 places; cited to £ places) for 6 - 1, 2, 3, IcTand k • 0.1, 
0»2>»*a.«#«l*0«   Also cited are values of |i (which in our notation is 
ß ♦i|t) and of M (in our notation B/lA).   While the mesh of k's seems 
to be aiq>]y fine, the mesh of   6*8 seems rather coarse; most points 
fall in the stable regions.    An /TTS k chart (i.e., the chart of 
-2q/a 78 A ' /2) is outlined,   in extremely laconic summary of theory 
from the viewpoint of electrical engineer. 

(2) BBL'a data •   The equation (1) was used in the form 

■ (ftr/dt2 ♦ (VU) (n2 ♦ r «» t)/ • o. 

so that t - 2z, r ■ -29* origin of z shifted by n/2, n   <■ a.   The wot* 
sheets are available.   Calculations'Vere made for approximately 680 

2 OMbinations of n ?0 and Y# es marksd by circles on Figure 2.   The 
wozk sheets state the two.values of S in the mstable regions, and 
the vain of A of (U) in the stable regions. 

• 

•, 
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DBSCRIITION CF THB CHIIff 

The attached iso-S-^ chart is essentially the sane as Conrie's 
lso-ß-ii chart « with the foUowlng differences! 

(1) The contour lines in the regions of instability are for the 

round -values of 5 • e**11, rather than for round values of (i* A" it . 
«as nentioned before, S and (6) seea more basic than p and (2}{ besides« 
S is easier to compute than p, is also much easier to visualise, and - 
probably - easier to use. Incidentally, it nay appar that in order to 
complete the symmetry, in the stable regions it might have been proper 
to cite the values of the angle pm, rather than of the coefficient ß| 
however, in that case the factor n is merely the statement of the most 
relevant unit (half-turn instead of ladian). 

(2) The scale of abscissa is a ' (rather than a), designated by 
i/2 —    • 

n| this is Brainerd's 26 •' «. This scale was suggested by Mclachlan, 
bat used for the first time, it appears, hy Bralnerd* The advantages 
of this scale are abvioust the nuutoer n has a simple physical 
significance! the most important region'of instability , the first-order 
one, can be magnified on the chart} the less important regions are 
shrunk} the scale of ß along the axis of abscissas is uniform. Qawever, 
there are also certain disadvantages! vis», the region of static 
instability, a <1, is perforce excluded. 

(3) The ordinate is y/n , or -2q/a9 or Brainerd's k, rather than y 
or 2q, This again seems to have been suggested hy Helachlan, who -pointed 
out that in certain problems covered hy Hathieu theory q/a has a better 
physical significance than ^1 i.e., it is often desirable to inspect the 
line q/a • const rather then the line q • const. In particular, with the 

change of the scale of abscissas from a ■ n to n, the line q/a • const 
becomes a parabola. The reader «he prefers «or y as the parameter may 
easily construct, or use, the lines of y - k? • const. The convenience 
of the scale of k is that the regions of higher order of instability are 
shrank, and the Tirst-order region can be magnified} thus, more information 
is brought within the rectangle of the chart. However, all intercepts 
of the characteristic lines with the line n ■ 0 now recede to infinity, 
and these lines become aaynptotic to the axis n • 0. Thus for certain 
problems of Mathien theory the iso-S-p chart cannot replace the iso-ß-p 
chart* 

It should bo noted that Brainerd's and BBL's shift of the origin 
of ■ ty a/2, i.e., their use of a negativ» q in (1), does not matter 
at all as far as this chart is concerned. However, as a mere matter 
of adhering to a standard notation, it should be noted that at the 
characteristic conditions Brainerd's g, for instance, does not 
approach oeI|(s,q), as might be expected off-hand} rather. It'approaches 

■»n(i • i»/2tq) whin n Is odd, and o«^(s • n/2,q) uhen n is even} 
similarly, his h approaches •osn(f - «/2,q) with n odd, and •'•^U - «/2tq) 

A 



«han n la »van»   Tha reader is further raainded that throughout this 
alananbazy reyLev «a are not eonoemed with the normalisatloD of the 
eharacterlstic functions, vhila In the literature   definite methods 
of standardised normalization' have been proposed. 

fit the Study Of tha unstable regions a simple visualisation of 
tha chart is possible»   The stable regions may be vlsuallsaftd  . at sea 
level (S - 1), and the unstable regions, as mountain promontories 
rising out of that sea.    It is particularly interesting to inspect the 
domain k<l, viz«, when the spring stiffness is always positive.    In 
this domain the first-order region, or the ridge, is readily seen to 
be most important, particularly at lower values of kj its crest, or 
watershed. Is practically straight, while the higher-order regions 
terminate in sloping sand flats (and that in spite of the change of 
scale from q to kj on the MoLachlan-Gomrie chart this is even more so)« 
On the other hand, for k>l the higher-order regions (a domain which 
is way off the McLaohlan-fComrie chart) apparently become more 
important than the first-order region.   Also, as was mentioned above, 
at the edges the surface of these ridges seems to be vertical, even 
with the higher-order regions (as though the shores of even the sand- 
flats were washed off). 

Some visualization is also possible for the stable regions, although 
it becomes quite clumsy if we would attempt to blend it uLth the 
visualization of the unstable regions (this is natural, for S in the 
unstable regions and the angle ßn in the stable regions have different 
physical significance).    It seems best to limit such visualization to the 
proximity of the shore.line} then iso-ß lines are contours of the sea 
bottom.   Again, it seems to be an empirical fact (possibly useful in a 
study o' the vicinity of the characterLstic or  -.itions) that at the shore 
lines the surface of this bottom is vertical.    In such a study, then,it 
might be advantageous to revert from iso-S lines to iso-n lines. 

t 

The accuracy of this chart is severely limited by the crude 
graphical intezpolations used, and does not do justice to the seven- 
place ENIAC data* 

Tha writer is indebted to Mrs. Florence B. Qoggina for the 
construction of the charts. 
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